инженер-химик.рф

Информационный портал для химиков


Определение фенолов в сточных и природных водах

Весьма распространенными экотоксикантами являются фенол и его хлорпроизводные и нитропроизводные, гваякол, крезолы. Эти соединения образуются в процессе производственной деятельности человека, в частности, в целлюлозно-бумажном производстве. Возникает необходимость их определения в различных типах вод: природных, водопроводной, производственных и сточных. Состав вод весьма сложен и может включать большое число фенольных соединений, которые образуются как на стадии загрязнения, так и в процессе очистки вод. Наиболее вероятными компонентами сточных вод являются фенол, гваякол, о-, м- и п-крезолы, моно-, ди-,три- и пентахлорфенолы, моно- и динитрофенолы. Для разделения и одновременного определения летучих и малолетучих фенолов весьма удачным является использование высокоэффективной жидкостной хроматографии на гидрофобизированном силикагеле. Эффективность и селективность разделения фенолов определяется составом подвижной фазы. Наиболее часто для разделения фенолов в ВЭЖХ используют смеси ацетонитрила или метанола с буферными растворами (ацетатными или фосфатными), успешное разделение фенолов различного состава может быть достигнуто, если в
качестве водного компонента подвижной фазы используется вода, подкисленная уксусной, хлоруксусной или фосфорной кислотой. Время удерживания фенолов определяется их гидрофобностью и увеличивается с ее ростом. Для наиболее значимых фенолов, загрязнителей окружающей среды, удерживание растет в ряду: катехол < фенол < 4-нитрофенол < гваякол < п-крезол < 2,4-нитрофенол < 2-нитрофенол < 2-хлорфенол < 4- хлорфенол < 3-хлорфенол < 2,4-диметилфенол < 4-хлор-3-метилфенол < 2,4-дихлорфенол < 2,4,6- трихлорфенол <  пентахлорфенол и зависит от состава подвижной фазы. Чем больше в ней содержание ацетонитрила или метанола, тем меньше удерживание. Для разделения столь сложной смеси
фенольных соединений не удается подобрать подвижной фазы определенного состава. Необходимо либо использование градиентного элюирования, либо разные фенолы делят с использованием различных подвижных фаз.

Низкие ПДК фенольных соединений в водах требуют чувствительных методов детектирования или предварительного концентрирования. Достаточно успешным является детектирование фенолов с использование ДДМ, предел обнаружения фенола при длине волны 260 нм в этом случае достигает 1 мг/л. Еще большей чувствительностью и селективностью к фенолу и его производным обладает амперометрический детектор. Его использование позволяет определять фенолы на уровне ПДК даже в природных водах. В природных водах ПДК для фенола составляет 0,001 мг/л, п- лорфенола – 0,002 мг/л, 2,4-дихлорфенола – 0,004 мг/мл, 2,4,6 – трихлорфенола – 0,006 мг/л и пентахлорфенола – 0,01 мг/л. Амперометрическое детектирование основано на окислении фенолов на поверхности твердого электрода, в качестве которого обычно используют стеклоуглеродный электрод. Установлено, что максимальный сигнал регистрируется при потенциале стеклоуглеродного электрода – +1300 мВ относительно стального или +1100 мВ относительно хлоридсеребрянного электродов сравнения. Важным является использование в качестве компонента подвижной фазы фосфорной кислоты, в этом случае минимальны флуктуации базовой линии сигнала амперометрического детектора, что позволяет уменьшить величину  минимальной определяемой концентрации, которая сответствует сигналу, равному удвоенной “ширине” базовой линии. В табл. 14. приведены примеры определения фенола в водах в различных
условиях, на рис. 17 показана хроматограмма смеси, а на рис. 18 – 20 определение фенолов в водопроводной и сточной воде.

Комментирование закрыто.