инженер-химик.рф

Информационный портал для химиков


Газовая хроматография

Газовая хроматография – метод разделения летучих, термостабильных соединений. Этим требованиям отвечает около 5% известных органических соединений, но именно эти соединения оставляют 70-80 % соединений, которые использует человек в сфере производства и
быта. Подвижной фазой служит инертный газ (газ-носитель), протекающий через неподвижную фазу, имеющую большую поверхность.
В качестве подвижной фазы можно использовать водород, гелий, азот, аргон и углекислый газ. Наиболее часто используют азот, как более доступный и дешевый. Газ-носитель обеспечивает перенос разделяемых компонентов по хроматографической колонке и не взаимодействует ни с
разделяемыми веществами, ни с неподвижной фазой.

Достоинствами газовой хроматографии являются:
– сравнительная простота аппаратурного оформления;
– весьма широкие границы применимости (можно определять соединения, для которых достигается давление насыщенного пара 0,001-1 мм рт.ст.);
– возможность определения с высокой точностью малых количеств газов органических соединений с высокой точностью;
– быстрота анализа;
– широкий выбор сорбентов и неподвижных фаз;
– высокая гибкость изменения условий разделения;
– возможность осуществления химических реакций в хроматографической колонке или детекторе, что расширяет круг анализируемых соединений (реакционная газовая хроматография);

– повышение информативности при сочетании с различными инструментальными методами (масс-спектрометрией и ИК(Фурье)спектрометрией).
На рис. 2 показана принципиальная схема хроматографа. Газовый хроматограф представляет собой совокупность нескольких узлов.

Рис. 2. Принципиальная схема газового хроматографа
Стабилизация и очистка газовых потоков происходит в системе подготовки газов, которая состоит из баллона с газом-носителем (1) и блока подготовки газов (2). Блок подготовки газов включает: дроссель, регулятор давления, регулятор потока.
Дозирование и ввод пробы осуществляется с помощью медицинского или микрошприца (для парообразной или жидкой пробы соответственно) или дозирующей петли (3). Пробы вводятся через резиновую мембрану в испаритель (4) – специальное устройство для испарения пробы. Затем
потоком газа-носителя проба переносится в колонку (5), которая помещена в термостат (6). Для более точного дозирования или ввода нестандартных проб можно использовать специальные дозирующие устройства: дозирование давлением; микродозатор-микродиппер (пробы < 1 мкл);
устройство для ввода твердых проб; герметичные пробоотборные колонки.
При введении пробы должны соблюдаться следующие условия:
– минимальный водимый объем;
– проба не должна быть направлена навстречу потока газа-носителя и искажать характеристики потока;
– воспроизводимость пробы с большой степенью точности;
– испарение без разложения;
– смеси компонентов должны вводиться и испаряться без изменения состава;
– количество вещества в пробе должно быть намного меньше емкости колонки.
Система детектирования состоит из детектора (7) с блоком питания (8), усилителя сигнала детектора (9) и регистрирующего устройства (10). В систему детектирования может быть включен
электронный интегратор, измеряющий параметры хроматографических пиков.
Испаритель и детектор, как и колонку, термостатируют.

В газовой хроматографии используют насадочные, капиллярные и поликапиллярные колонки, их сравнение показано в табл. 1.
Использование капиллярных колонок позволяет существенно повысить эффективность разделения, а поликапиллярных – не только получить высокую эффективность, но и провести разделение за очень короткое время. На рис. 3. показано разделение смеси легких углеводородов из 12
компонентов за 15 сек.

В газовой хроматографии используют широкий круг детекторов, которые можно подразделить на интегральные и дифференциальные. Интегральные – регистрируют изменение во времени суммарного количества всех компонентов, дифференциальные – измеряют мгновенную
концентрацию компонентов. На рис. 4 показан общий вид интегральной (а) и дифференциальной (б) хроматограмм. Дифференциальные детекторы в свою очередь подразделяют на концентрационные и потоковые.
В концентрационном детекторе сигнал определяется текущей концентрацией в ячейке и многократно регистрируется, зависит от скорости потока. Детектор такого типа – катарометр. Потоковый детектор регистрирует сигнал однократно, сигнал определяется мгновенным значением концентрации, не зависит от скорости потока.
Пример такого детектора – пламенно-ионизационный детектор.

Общие требования, предъявляемые к детекторам следующие:
– достаточная чувствительность для решения конкретной задачи;
– малая инерционность;
– малая зависимость показаний от параметров опыта (температуры, давления, скорости потока и др.);

-линейная связь между показаниями и концентрацией в широком интервале ее изменения;
– стабильность «нулевой линии»;
– легкость записи сигнала и передачи его на расстояние;
– простота, дешевизна.

Наиболее важные характеристики детекторов, определяющие их выбор: чувствительность, точность, число порядков линейного диапазона градуировочного графика (ГГ), инерционность. Основные детекторы, применяемые в газовой хроматографии приведены в табл. 2. Универсальным является катарометр – детектор по теплопроводности, принцип работы которого основан на изменении температуры нагретых нитей (чувствительных элементов) в зависимости от теплопроводности окружающего газа, которая определяется его составом. Детектор измеряет различие в теплопроводности чистого газа-носителя и смеси газа-носителя с определяемым веществом.
Чувствительность детектора определяется геометрическими характеристиками чувствительного элемента, электрическими  параметрами чувствительного элемента и измерительного моста,
теплопроводностью газа-носителя и анализируемого соединения. Для повышения чувствительности необходимо использовать газ-носитель с высокой электропроводность (водород, гелий).
Похожими по конструкции являются детектор по плотности газов и детектор по теплоте сгорания (термохимический.) В детекторе по плотности газов измерение основано на различии плотностей газа-носителя и компонентов анализируемой смеси. Чувствительность детектора зависит от разности плотностей, в качестве газа-носителя рекомендуют использовать воздух, азот, аргон, диоксид углерода, и не использовать водород и гелий. Достоинствами этого детектора являются:

отсутствие необходимости градуировки; возможность использования для агрессивных и каталитически неустойчивых соединений; возможность использования для определения молекулярной массы анализируемых веществ. Получение сигнала детектора по теплоте сгорания основано на измерении теплового эффекта при сгорании компонентов анализируемой пробы в присутствии катализатора (платины). Он не нашел широкого применения из-за следующих недостатков: применим только для анализа горючих веществ; не применим в препаративной хроматографии; имеет ограниченный интервал определяемых концентраций – (0,1 – 5) %.

Наиболее широко используются ионизационные детекторы, принцип работы которых основан на изменении ионного тока, вызванного введением в детектор анализируемого вещества. Ионный ток возникает под действием источника ионизации и электрического поля между электродами детектора.
В качестве источников ионизации используют:
– пламена (пламенно-ионизационный детектор)
– электронную и ионную эмиссию (термоионный детектор)
– радиоактивные изотопы (детектор электронного захвата)
– электрический разряд
– фотоионизацию (фотоионизационный детектор)

В любой момент времени в детекторе достигается равновесие, в результате которого скорость образования заряженных частиц (ионов и электронов) равна сумме скоростей рекомбинации и сбора заряженных частиц на электродах детектора. Создаются условия, при которых либо плотность (концентрация) заряженных частиц, либо скорость переноса частиц в электрическом поле зависит от состава газа в камере детектора.
Пламенно-ионизационный детектор (ПИД) – универсальный, чувствительный детектор, принцип действия которого основан на измерении электропроводности воздушно-водородного пламени, которая резко возрастает при попадании в него малых количеств органических веществ. При этом в пламени пиролиз вещества обеспечивает наличие радикалов СН•, которые по схеме

обеспечивают протекание тока. Атомы кислорода галогенов, серы, фосфора и азота могут взаимодействовать как с углеводородными радикалами, так и с ионами СНО+, уменьшая ионизационный ток и, следовательно, сигнал детектора.
Отклик ПИД пропорционален числу атомов углерода в молекуле, причем этот отклик мало меняется при переходе от одного класса органических соединений к другому. Быстрый оклик, стабильность сигнала, широкий линейный диапазон сделали ПИД наиболее широко используемым в настоящее время газохроматографическим детектором, которым оснащены все хроматографы.

Термоионный детектор (ТИД) селективен к азот- и фосфор-содержащим соединениям и является модификацией пламенно-ионизационного детектора. Особенность этого детектора состоит в том,
что вблизи водородного пламени горелки помещают соль щелочного металла (шарик, содержащий бромид рубидия). Нагретая соль атомизируется и образующиеся при этом атомы рубидия диссоциируют на ионы и электроны, которые попадают в электрическое поле. В присутствии соединения, содержащего галоген, азот или фосфор, ионный ток возрастает, т.е. происходит селективное повышение эффективности ионизации соединений содержащих атомы азота и фосфора. В их число входит множество чрезвычайно опасных загрязнителей среды –
гербицидов, инсектицидов и фунгицидов.
Селективным и чувствительным детектором для определения галогенсодержащих соединений является электронозахватный детектор (ЭЗД). В детектор входит радиоактивный источник β-частиц, которые ионизируют молекулы газа-носителя, с образованием ионов и тепловых
электронов, которые формируют электрический ток в камере детектора. Принцип действия этого детектора основан на уменьшении проводимости, вызываемом захватом электронов веществом, содержащим атомы с высокой электроотрицательностью.

Принцип действия фотоионизационного детектора (ФИД) заключается в ионизации молекул, элюируемых с хроматографической колонки под действием вакуумного УФ-излучения и измерении
возникающего ионного тока. Изменя энергию излучения, можно варьировать чувствительность детектирования соединений различных классов. Особенно низкий предел обнаружения у ФИД для ароматических углеводородов (при использовании лампы с энергией 10.2 эВ).  Положительной особенность ФИД является то, что он не разрушает детектируемые соединения, и его можно использовать в комбинации с другими детекторами для более надежной идентификации сложных
смесей.
Наиболее информативным и чувствительным детектором, используемым в газовой хроматографии, является масс-спектрометрический детектор. Принцип действия детектора основан на том, что при ионизации молекулы в вакууме образуется группа характеристических ионов. Число образующихся ионов пропорционально количеству поступающего вещества, регистрируется изменение полного ионного тока, который пропорционален числу ионов. Одновременно с
записью хроматограммы (зависимости полного ионного тока от времени) в любой ее точке, обычно на вершине хроматографического пика, может быть зарегистрирован масс-спектр (зависимость интенсивности ионного тока от массы иона). Масс-спектрометр в отличие от других спектроскопических детекторов регистрирует не излучение илипоглощение энергии  молекулами или атомами вещества, а сами частицы вещества, измеряет их массы, вернее отношение массы к заряду. Таким образом, масс-спектрометрический детектор можно рассматривать как универсальный детектор, который позволяет определить состав
анализируемой смеси и идентифицировать разделяемые компоненты. Некоторые характеристики описанных выше детекторов, приведены в табл. 2. Из других детекторов, важных для сложных экологических анализов, благодаря их высокой селективности, необходимо упомянуть пламенно-
фотометрический (ПФД), хемилюминесцентный (ХЛД) детекторы, которые селективно определяют серо- и фосфорсодержащие соединения.
Высокой чувствительностью и селективностью к соединениям, содержащим атомы галогенов, серы и азота, обладает электролитический кондуктометрический детектор (ЭДКД). При получении сигнала хлор превращается в хлористый водород, сера – в диоксид серы, азот – в аммиак, которые поглощаются определенным растворителем, изменение его электропроводности преобразуется в сигнал детектора. Но данные детекторы используются на практике значительно реже.

Различают два варианта метода: газо-адсорбционную, когда неподвижной фазой служит твердый носитель, и газо-жидкостную хроматографию, когда неподвижной фазой является вязкая, нелетучая жидкость, нанесенная на инертный носитель.

Комментирование закрыто.